Identification of a Dynamic Core Transcriptional Network in t(8;21) AML that Regulates Differentiation Block and Self-Renewal

نویسندگان

  • Anetta Ptasinska
  • Salam A. Assi
  • Natalia Martinez-Soria
  • Maria Rosaria Imperato
  • Jason Piper
  • Pierre Cauchy
  • Anna Pickin
  • Sally R. James
  • Maarten Hoogenkamp
  • Dan Williamson
  • Mengchu Wu
  • Daniel G. Tenen
  • Sascha Ott
  • David R. Westhead
  • Peter N. Cockerill
  • Olaf Heidenreich
  • Constanze Bonifer
چکیده

Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq) to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21) cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21) cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21) is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AML1/ETO induces self-renewal in hematopoietic progenitor cells via the Groucho-related amino-terminal AES protein.

The most frequent translocation t(8;21) in acute myeloid leukemia (AML) generates the chimeric AML1/ETO protein, which blocks differentiation and induces self-renewal in hematopoietic progenitor cells. The underlying mechanisms mediating AML1/ETO-induced self-renewal are largely unknown. Using expression microarray analysis, we identified the Groucho-related amino-terminal enhancer of split (AE...

متن کامل

The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia.

The transcription factor PU.1 plays a pivotal role in normal myeloid differentiation. PU.1(-/-) mice exhibit a complete block in myeloid differentiation. Heterozygous PU.1 mutations were reported in some patients with acute myeloid leukemia (AML), but not in AML with translocation t(8;21), which gives rise to the fusion gene AML1-ETO. Here we report a negative functional impact of AML1-ETO on t...

متن کامل

The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation.

The AML-1/CBF beta transcription factor complex is targeted by both the t(8;21) and the inv(16) chromosomal alterations, which are frequently observed in acute myelogenous leukemia. AML-1 is a site-specific DNA-binding protein that recognizes the enhancer core motif TGTGGT. The t(8;21) translocation fuses the first 177 amino acids of AML-1 to MTG8 (also known as ETO), generating a chimeric prot...

متن کامل

The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation.

AML-1B is a hematopoietic transcription factor that is functionally inactivated by multiple chromosomal translocations in human acute myeloblastic and B-cell lymphocytic leukemias. The t(8;21)(q22;q22) translocation replaces the C terminus, including the transactivation domain of AML-1B, with ETO, a nuclear protein of unknown function. We previously showed that AML-1-ETO is a dominant inhibitor...

متن کامل

Developmental-stage-dependent transcriptional response to leukaemic oncogene expression

Acute myeloid leukaemia (AML) is characterized by a block in myeloid differentiation the stage of which is dependent on the nature of the transforming oncogene and the developmental stage of the oncogenic hit. This is also true for the t(8;21) translocation that gives rise to the RUNX1-ETO fusion protein and initiates the most common form of human AML. Here we study the differentiation of mouse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014